The Future of Manufacturing
The manufacturing industry is an industry of growth and innovation that has adapted to many unforeseen events. For example, the pandemic lockdowns should have damaged the UK manufacturing industry, but these challenges have been overcome, and the industry has grown stronger. Now, with these challenges behind us, the manufacturing industry can look forward to setting new targets and achieving more goals in 2023.
Increased Sustainability
Sustainability is a crucial focus of the manufacturing industry and will continue to be so for the foreseeable future. The future of manufacturing is green, but there are many ways to achieve this. This is due to an increased awareness of the industry’s effect on the environment and the UK government’s plans to create a Net Zero Economy by 2050. Whilst the eventual target is to create a carbon-neutral economy by 2050, manufacturers are aware of the impending milestone in 2030 to reduce total carbon emissions to 45%.
Lean Manufacturing
Many commercial and industrial sectors have dedicated themselves to discovering new ways of maintaining their current operations, but with a reduced environmental impact. In-house waste management and energy usage are the main focuses of many companies as ways of optimising their production. This will improve their environmental impact but also has the side effect of creating a more financially efficient operation that wastes fewer materials. This can be achieved by managers exploring their in-house operations and the elements of their supply chain that proceed with it.
Supply chains are still feeling significant disruptions from the pandemic lockdown. However, as part of the manufacturing industry’s attempts to create a more stable supply chain, many are using the opportunity to explore more sustainable ways of acquiring the vital resources they need. Examples of these environmentally positive efforts are manufacturers eliminating unnecessary transportation, only sourcing what they need with no excess and reducing overproduction methods to their efficient minimums. Other efforts include investment in renewables and paying a ‘carbon debt’ that acts as a counterbalance to their operations and creates a balanced relationship with nature.
Automated Factories
Smart factories and automation have been the focus of significant investment this year and are predicted to continue into 2023. Automation within manufacturing is an existing method that is already highly embraced. For example, as tension spring manufacturers, we use high-quality CNC machines that have proven the increased efficiency and accuracy of automating complex manufacturing processes. This concept has grown into companies investing in robotics and other ways of automating more complex operations, further connecting to the increased development of smart facilities.
Smart Manufacturing Facilities
Smart manufacturing facilities result from companies developing their combinations of CNC machines connected via a system of hyperflexible, self-adapting manufacturing processes. This interconnectivity stretches across the entire facility. Sensors monitoring the progress and results of various operations can be remotely relayed to on-site personnel for review, allowing one person to monitor several activities simultaneously efficiently. The concept is to create a web of connected information sharing that lets a site manager know precisely what is happening during their daily operations.
This level of accessible data is not limited to the physical manufacturing operations either. For example, many manufacturers are increasing the automation of their facilities through the wireless tracking of assets as they travel. This operation covers the entire stream of functions within the facility, from recording the arrival of materials, the various manufacturing processes they undergo and the time and place of their export. Doing so eliminates the need for personnel to log these activities and creates a constant stream of accurate data for the manager to monitor.
Digital Manufacturing Techniques
Digital integration is a method that is being embraced by the manufacturing industry. In 1952 when the first CNC milling machine was invented, the industry saw the potential of computer-aided operations, and many innovations were created to build on this. However, the sector’s current aspirations are more focused on managing more comprehensive data on your specific company’s operations and their associated chains.
Big Data
Big data is an integral part of our work as a spring manufacturer, and it’s predicted to be a vital part of other companies’ plans thanks to the increases in interconnectivity throughout a manufacturer’s entire supply chain. However, supply chain management is still a critical issue as many chains continue to struggle to return to stable normality after the pandemic lockdowns. The response to the erratic behaviour is to optimise your chain, improving its efficiency and predictability. Big data technology involves digital systems with an increased variety, volume and velocity of data. In the context of manufacturing, big data collects together all the disparate elements from up and downstream on your supply chain, creating a far more efficient means of data management and analysis to find new ways of optimising your processes.
Digital Twins
Digital twin software is popular amongst many manufacturers and is predicted to become an essential part of future manufacturing methods. The concept of a digital twin is to create a digital simulation of a physical process or product. CAD (computer-aided design) is an example of this widely used idea, but further advancements are being developed for more intricate twins. This is achieved with various software designed to create digital objects within a computer that an engineer can analyse. These can be considered advanced prototypes, produced cost-effectively, so their manufacture or specifications can be assessed before committing to a physical twin. This is particularly useful when creating bespoke products requiring unique production methods; by testing them in a digital space, you can finalise your concept and prevent your investment from going to waste. It’s predicted that 70% of manufacturers will have a system that uses big data during 2023. Additionally, with investment in IoT (Internet of things) growing, the growth of digital twin technology could rise to 89% as soon as 2025.
It’s clear that digital integration is a permanent part of manufacturing’s future. Moreover, these systems’ effectiveness is increasing alongside the demand for new ideas. With digital integration becoming more achievable each year, it’s conceivable that all manufacturers will need to adopt these effective digital systems to remain a competitive business within the industry.