A power lines in a power plant

In the power industry, the quest for efficiency, reliability, and, above all, safety is constant. With its complex machinery and ever-evolving technologies, the sector demands a bespoke touch as standard solutions often fall short or don’t deliver the expected results. Amidst the humming turbines and buzzing control panels, custom pressings emerge as essential assets in shaping the foundation of power plant operations and providing the necessary strength and flexibility to support various systems.

In this blog, we will explore how these tailored solutions support the power industry in meeting and exceeding its specific needs, guaranteeing extreme precision and unmatched resilience in a sector where the stakes are high and the margin for error is slim.

The Importance of Bespoke Pressings in the Power Industry

As we mentioned, custom pressings are extremely valuable in the power industry, standing as a fantastic testament to the power of specificity, creating a perfect balance within complex machines. Unlike off-the-shelf alternatives, these pressings are tailored to the sector’s unique demands and offer a personalised approach to ensuring efficient, reliable, and safe operations.

When it comes to power generation, these components emerge as indispensable, as they are accurately designed and manufactured to make sure that every element aligns flawlessly for optimised performance. Whether it is about turbines or control panels, their bespoke nature allows for a perfect fit, resulting in excellent benefits such as reduced downtime and lower maintenance costs.

A large industrial machine with pipes

How Specific Pressings Contribute to Power Plant Operations

In a power plant, where each element must fit precisely for the whole setup to function without mistakes, bespoke metal pressings have a key role in various aspects, from shaping structural components to crafting connectors. These ad-hoc solutions influence the plant’s overall efficiency, safety, and long-term reliability, enabling seamless and continuous power generation.

One key area where these components shine is streamlining processes. In the power generation sector, downtime is not an option. By providing pressings specifically designed with the precise plant layout in mind, installation time is reduced, and compatibility issues are removed from the equation, keeping the industry’s wheels turning smoothly. This, of course, not only translates into immediate benefits but also allows for smoother operations in the long run.

A group of wind turbines in the water

Champions of Versatility: from Turbines to Switchgear

Custom pressings find their way into power plants, proving their versatility in diverse applications. From the towering turbines to the intricacy of switchgear, these components make sure everything works well and without issues.

They contribute to structural integrity in turbines, withstanding intense pressure and temperature conditions for exceptional performance. At the same time, they facilitate precise connections in switchgear, improving the reliability of the entire electrical system.

It is worth adding that the impact of tailored pressings is not limited to heavy-duty machinery alone. Control panels symbolise another critical aspect of power plant operations, which benefits from the flexibility and precision offered by bespoke industrial pressings. As the nerve centre of a plant, control panels demand components that adapt to evolving technologies and operational requirements. With their ability to cater to specific dimensions and functionalities, these pressings become the core of accurate monitoring and control, making the functioning of control systems precise and smooth.

Men wearing safety vests and helmets standing next to a large panel

Precision, Durability, Flexibility

As we have learned so far, custom pressings bring three main advantages to the power industry: precision, durability, and flexibility.

  • Precision is the first pillar, guaranteeing that every component fits perfectly into its designated space, enhancing the overall system efficiency and the safety of power plant operations.
  • Durability is the second one, standing tall in the face of the harsh conditions prevalent in power plants. Whether facing extreme temperatures, high pressures, or corrosive environments, pressings are built to withstand the toughest challenges. Their robust construction ensures a longer lifespan, reducing the frequency of replacements and their costs.
  • Flexibility is the third strength and the secret ingredient that allows these components to adapt to the dynamic nature of the electric power industry. As technologies evolve and operational requirements rapidly shift, they remain agile, accommodating changes without compromising performance. This adaptability is an understandably valuable asset in an industry that is constantly on the brink of innovation and transformation.

A power lines with the sun setting behind them

European Springs: Bespoke Excellence to Power Up Your Business

With our constant commitment to precision engineering and a deep understanding of the industry’s needs, at European Springs, we will deliver our distinctive excellence to the power industry by providing exceptional custom-built pressings. Thanks to us being bespoke spring manufacturers, we will support this complex sector by offering products that embody the perfect union of innovation and functionality, from intricate connectors to robust structural components.

Our dedication to meeting such specific requirements is highlighted by our collaborative, customer-centric approach so that every pressing we produce aligns with the particular requirements of each power plant. Trust European Springs in your quest for efficiency, reliability, and safety within the power industry; contact us today to explore all the opportunities and solutions we offer to power up your business.

A group of circular objects with symbolsSustainability has become the world’s foremost concern, encompassing every industry and a wide variety of practices. With this heightened attention, global and local businesses alike are seeking innovative solutions to align with eco-consciousness. Here, Enterprise Resource Planning (ERP) systems, initially designed to streamline operations and boost efficiency, are essential tools for improving sustainability within manufacturing. By using ERPs, manufacturers can easily optimise resource allocation, minimise waste, and reduce their environmental impact.

In this blog, we look into the dynamic relationship between ERPs and sustainability, exploring the areas where these systems make a difference by shaping environmentally friendly practices on factory floors worldwide.

A crumpled paper with a recycle symbol inside

Resource Optimisation and Waste Reduction

The first aspect we want to delve into is how ERP solutions are revolutionising manufacturing processes by optimising resource utilisation and minimising waste. These systems smoothly integrate various aspects of production, from procurement to inventory management, allowing manufacturers to track resource consumption accurately.

Thanks to real-time data analytics provided by ERPs, companies can identify poor or ineffective resource allocation and implement better strategies accordingly. These convenient solutions also facilitate the implementation of lean manufacturing principles, allowing companies to remove their non-value-added activities and, consequentially, additional resource-intensive processes.

A special mention goes to waste reduction by improving inventory management and demand forecasting. By using ERPs to predict demand patterns, manufacturers can adjust production schedules to match actual customer needs, reducing overproduction and subsequent waste. The adoption of just-in-time manufacturing practices, where materials are ordered and received only when needed, leads to substantially reduced inventory stockpiling and waste, which allows the alignment of operational efficiency with environmental sustainability goals.

A person holding a pile of broken glass

Supply Chain Transparency and Ethical Sourcing

With consumers becoming increasingly aware of supply chain transparency and ethical material sourcing, manufacturers are prioritising sustainability in procurement, knowing it can improve their Corporate Social Responsibility (CSR) and positively impact their brand reputation. In this context, ERP systems are an excellent solution to achieve this objective; by centralising supplier data, they allow manufacturers to trace raw materials across the entire supply chain, from source to product. This transparency results in building consumer trust through informed decision-making and holding suppliers accountable for ethical and environmental practices.

Additionally, ERPs streamline collaboration between manufacturers and suppliers through real-time information exchange on sustainability metrics. By engaging suppliers in sustainability initiatives, these solutions allow for positive change throughout the supply chain while also identifying risks of unethical practices.

A green plant with white circles and icons

Improved Energy Management and Carbon Footprint Reduction

Energy management and carbon footprint reduction are core aspects of sustainable manufacturing, and ERPs are essential to making these initiatives possible and effortless. For example, integrating energy monitoring systems and Internet of Things (IoT) devices provides instant insights into energy consumption across all stages of production. From here, manufacturers can analyse energy usage patterns to identify areas of inefficiency and then implement targeted strategies to improve energy consumption and reduce carbon emissions. The adoption of these energy-efficient processes and equipment helps companies minimise their environmental impact and, at the same time, run cost-saving operations.

Another advantage ERPs offer is the opportunity to empower companies to participate in carbon trading schemes and offset programs, which results in additional contributions to carbon footprint reduction efforts.

A puzzle with a red piece missing

Compliance Monitoring and Regulatory Adherence

Compliance monitoring and regulatory adherence are critical aspects of sustainable manufacturing that guarantee companies run their activity respecting environmental laws and regulations. Here is a breakdown of the main aspects that ERPs improve:

  • They provide reliable compliance management features, allowing manufacturers to track regulatory requirements and ensure adherence across every step of the production process. By doing so, companies can streamline audits and proactively address any non-compliance issues.
  • They allow for the implementation of environmental management systems and accreditations, such as ISO 14001, by providing the necessary tools for documentation, monitoring, and reporting.
  • They enable companies to keep up with evolving regulations and adapt their processes accordingly. Through automated alerts and notifications, ERPs keep manufacturers informed of regulatory changes that may impact their work, allowing for timely adjustments to policies and procedures.

Data-Driven Decision-Making for Sustainable Practices

At European Springs, we are aware that data-driven decision-making lies at the heart of sustainability in manufacturing. It allows companies like ours to identify valuable opportunities for improvement and track progress towards sustainability goals. The wealth of data analytics tools that ERPs provide gives manufacturers the chance to gain helpful insights into various aspects of their activities, from resource utilisation to supply chain performance. By employing advanced analytics methods, companies can:

  • Identify inefficiencies
  • Benchmark performance against industry standards
  • Prioritise areas for intervention
  • Predict future trends and anticipate potential sustainability challenges

Through performance dashboards and KPI tracking, manufacturers can monitor key sustainability metrics and identify areas where performance falls short of targets. Overall, ERPs promote a culture of accountability and innovation, where sustainability becomes ingrained in day-to-day decision-making processes.

A hand with a green painted hand holding a leaf

European Springs & Pressings’ Sustainability Statement

At European Springs, our sustainability commitment reflects our ongoing dedication to environmental stewardship and our determination to make a positive difference in the world. As premium spring manufacturers, we want to shape the future of the manufacturing industry and contribute positively to the world around us. From implementing energy-efficient technologies to optimising resources, we constantly make responsible choices that benefit our business and the planet. Our pledge in 2024 and for all the years to come is to reduce carbon emissions, minimise the environmental impact of our operations, and lower our carbon footprint.

If sustainability is a priority for your business and you’re interested in learning more about our initiatives and services, we invite you to reach out to us. Together, we can work towards a greener future for everyone.

A close-up of a stethoscopeIn the healthcare industry, where precision and reliability are paramount, one might not immediately think of springs as fundamental players. However, when digging deeper, it is surprising to discover that the medical sector relies extensively on these minute, coiled components. Machines and tools employed by healthcare professionals worldwide often contain a spring or wire form of some kind. As a matter of fact, springs represent the backbone of medical equipment, ensuring the efficiency of instruments utilised in diagnosis, treatment, and patient care.

In this blog, we at European Springs & Pressings will unravel the relationship of springs in healthcare. From precise surgical instruments to intricate mechanisms supporting advanced imaging devices, the job of springs is to maintain the delicate balance between precision and durability. We will also delve into their diverse application, uncovering the various types that have become indispensable in healthcare technology. Understanding the bond between springs and healthcare equipment is a fascinating journey across the intersection of engineering and the science of medicine.

A close-up of asthma inhalersWhat Springs Are Commonly Used in the Medical Industry?

At the core of the medical industry lies a trio of indispensable springs:

·        Compression springs

·        Tension springs

·        Gas springs

These resilient spring types are essential to specific medical equipment, ranging from catheter clips and ventilators to filters for breathing apparatus and protective visors. Their vital importance cannot be overstated, as they contribute to the correct and efficient functionality of devices that directly impact patient care. To ensure the longevity and reliability of each product, they must adhere to the highest standards, dedicating particular attention to detail.

Among these, gas springs emerge as the most versatile type within the healthcare industry, finding application in a multitude of medical equipment. From patient beds to continuous positive airway pressure machines to positive pressure ventilators and pressure regulators, their adaptability is a solid testament to their efficacy. Without these springs, many implants and medical devices, such as inhalers, heart valves, pacemakers, and insulin pumps, would be compromised.

What’s more, recognising the stringent cleanliness standards of the medical springs, it is worth mentioning the use of stainless steel alloys in the production. This material not only meets high-standard hygiene requirements but also ensures easy cleaning, which is a critical attribute in sterile environments. As bespoke spring manufacturers, we may turn to Platinum-Tungsten and Platinum-Iridium, exploring alternative materials that mirror the characteristics of stainless steel alloys to align with the unique demands of specific medical endeavours. Our dedication to precision and quality reflects our understanding of the pivotal role these springs play in advancing healthcare technology.

A medical equipment in a hospitalVentilators

As we mentioned above, many medical devices and their efficiency rely on springs. One prime example is ventilators, crucial in respiratory care and life support, whose demand in 2020 increased exponentially on a global scale. In ventilators, springs contribute to the precise control of airflow, pressure regulation, and the overall reliability of these life-support devices. Let’s see in detail what spring types are involved and what they are used for.

Tension Springs in Valve Mechanisms: tension springs find application in valve mechanisms. They create the necessary tension to regulate the opening and closing of valves, controlling the flow of air or oxygen to and from the patient. The precision and reliability of tension springs are fundamental in maintaining the accuracy of air delivery, a critical aspect of ventilator performance.

Compression Springs for Pressure Regulation: these springs are often used in pressure regulation systems within ventilators. They help manage and control the pressure of the delivered air, ensuring that it meets the specific requirements of the patient’s respiratory needs. The compressibility and resilience of these springs are essential to the responsiveness and accuracy of pressure adjustments in the ventilator.

Gas Springs for Adjustable Features: by offering a controlled and smooth movement, gas springs allow flexibility in the positioning of certain components of the ventilator. This adaptability is crucial for healthcare professionals to tailor ventilator settings in order to meet patients’ specific needs.

Given the life-saving nature of ventilators, the reliability and longevity of their components, springs included, are of utmost importance. Springs used in ventilators must adhere to strict quality standards to ensure they can withstand continuous and often demanding usage. The choice of the appropriate material, such as stainless steel, is therefore paramount as durability gets enhanced and the risk of corrosion minimised.

A room with a table and lightsPrecision in Diagnostics: Imaging Devices

In medical imaging, where technological advancements continually reshape the landscape of diagnostics, springs and pressings represent a cornerstone of precision. The delicate mechanisms within Magnetic Resonance Imaging (MRI) machines, which capture detailed images of internal structures, rely on the balance provided by these springs. They improve the precision of the moving parts, ensuring the device captures accurate diagnostic imaging. The stability imparted is indispensable to the effectiveness of MRI technology in providing vital insights into the human body.

Expanding beyond MRI machines, they are also essential to the functionality of X-ray tables, where many components collaborate to acquire detailed images with minimal patient discomfort. The controlled movement facilitated by springs within X-ray tables allows for the precise positioning of patients, enabling healthcare professionals to obtain precise diagnostic results.

Finally, once again, gas springs deserve a special spotlight. In the context of modern Computed Tomography (CT) scanners, they play a pivotal role in the creation of adjustable features that elevate the diagnostic process. For instance, they facilitate the adjustment of the scanning bed, allowing healthcare practitioners to position patients with unprecedented accuracy. This not only enhances the diagnostic capabilities of CT scanners but also contributes to the overall comfort and safety of patients undergoing imaging procedures.

The continuous innovations in spring technology not only augment the precision of diagnostic imaging devices but also foster advancements in patient-centric care.

A doctor holding a patient's hand
European Springs’ High-Quality Commitment

As we saw, the springs used in the world of medicine are often tiny, yet their impact on health and wellness is huge. These crafty components support healthcare professionals in improving lives, making surgical procedures safer, disease management easier, and recovery quicker.

At European Springs & Pressings, we take great pride in ensuring that all our clients in the medical sector possess the right instruments to save lives across the world all year round. That’s why we use our extensive expertise as spring manufacturers to guarantee the highest quality materials across our entire spring range. Check out our Spring Catalogue or contact us to learn how we can assist you.

At European Springs, we take great pride in our expertise in designing and manufacturing various spring and pressing products for various applications. These humble yet indispensable components prove their versatility across various household, workplace and transportation objects as reliable parts. Read on to see how many springs you unconsciously encounter daily, the importance of understanding different spring designs, and our bespoke services to create these applications.

Springs in Household Items

Springs are ubiquitous in countless household items, pivotal in their functionality and convenience. While the list is extensive, we can only touch upon a few examples.

Sprung Mattress

Springs are the unsung heroes of a good night’s rest. As we lay down to sleep, the compression springs in a sprung mattress provide crucial support for our bodies. They react to our movements throughout the night, ensuring optimal comfort and alignment. Without these springs, a restful night’s sleep would be impossible.

Door Handles

Have you ever considered the role of springs when opening doors? We rely on them countless times daily as we enter and exit rooms. Torsion springs provide the necessary tension, making it effortless to grip and turn door handles, allowing smooth operation with minimal effort. This spring design is used in any size door that operates on a hinge principle, be it a large facility, internal home or even microwave door.

Remote Control

Next time you use a remote control, take a moment to appreciate the springs at work. Without springs, remote controls and similar battery-operated devices would cease to function. This vital combination of springs and pressings completes the electrical circuit within the remote control battery compartment, enabling the transmission of signals to control electronic devices. They provide the necessary power for the device to operate without dependence on external power sources or wires.

DVD Drives and Games Consoles

Tension springs have an essential role in the design of DVD, Blu-ray and games console entertainment devices by providing the necessary force to maintain the function of the drive tray. These springs are typically used in the loading mechanism of the players, allowing the tray to smoothly open and close.

When the eject or load button is pressed, the spring expands or contracts, exerting the required force to move the tray. Without tension springs, DVD and Blu-ray players’ smooth operation and functionality would be compromised. Including these springs ensures reliable and efficient performance, allowing users to load and eject discs conveniently.

Springs in Workplace Items

Workplace equipment often incorporates spring designs to enhance functionality and improve user experience. For example, various pieces of office stationery would surprise people with custom spring designs within them.

Staplers and Hole Punchers

Staplers and hole puncher springs use tension and compression to provide the necessary force to compress the material being worked on. These springs are typically located inside the tool’s main body and push the plunger forward when pressure is applied to the handle.

Badge Holders

Retractable badge holders often use spring designs to enable the cord or chain to be easily pulled in and out of the holder. These retractable mechanisms typically include a clock spring that stores energy from the user’s pull and unwinds to extend the cord or chain. The spring tension is designed to be strong enough to securely retract the cord or chain while remaining sufficiently flexible to offer a comfortable and convenient user experience.

Mechanical Pens

Pens and pen caps often utilise compression springs to ensure a secure and smooth action when opening and closing. The spring is usually located in the pen barrel or the cap and applies the necessary force to hold the cap in place or move the pen tip forward.

Springs in Transportation

We cannot avoid encountering springs even when travelling from home to work. Springs have a vital role in the transportation and automotive industry and are highly effective at helping us easily get from our homes to workplaces.

Springs in Cars

Springs in cars play a crucial role in providing a smooth and comfortable ride for commuters. Suspension systems with coil springs absorb shocks and vibrations, ensuring a stable and controlled driving experience. The springs in these systems are significantly improved over the years but you’ll also find compression springs in other areas such as the seats.

Springs in Trains

In the rail industry, springs serve as vital components in the suspension systems of both locomotives and carriages. They help absorb the lateral and vertical forces generated during train travel, ensuring a stable ride and passenger comfort. These springs assist in maintaining the balance and stability of the train, facilitating a safe and efficient commute between home and work.

Springs n Busses

Busses also rely on springs, specifically in their suspension systems, to provide passengers with a smooth and comfortable journey. Coil springs or air springs support the weight of the bus and absorb bumps and vibrations, resulting in a more pleasant ride. By ensuring a comfortable travel experience, these springs help people commute effortlessly from their homes to their workplaces.

Bespoke Spring Manufacturing from European Springs.

These are just some of the many items that depend on springs to function, and they, in turn, rely on spring manufacturers like us to create these components to the highest standard.

With our expertise and commitment to excellence, application designers can trust that their products will meet the highest standards and surpass customers’ expectations. A partnership between your designers and our team of engineering manufacturers is essential in achieving innovative and reliable solutions for the above examples and many more across every sector.

To enquire about our bespoke service, contact us today, and we’ll help get your application the spring designs it needs.

Reducing the environmental damage of various industries in the UK is a challenge that manufacturing is rising to. The main focus is to reduce harmful ecological waste and make carbon emissions neutral through reduced output and offset compensation efforts.

Industries like manufacturing have significantly negatively affected the environment for many decades. Still, with new processes being developed often, the industry has a greener future.

sustainable manufacturing

UK Sustainability Challenge

It has been just over a year since the UK hosted COP 26 (United Nations Climate Change Conference #26) at the end of November 2021. This impactful conference addressed three main goals related to reversing climate change:

  • Revisiting the 2015 Paris Agreement for improvements such as limiting warming to 1.5°C
  • Phasing down unabated coal usage
  • Committing to financing climate change efforts in developing countries

There was also a pledge to increase countries to aim for Net Zero status. With over 40 countries already committed to reversing deforestation and electricity generated from coal, they adopted over 140 members into the Net Zero plan.

The UK government heavily supports the Net Zero 2050 plan as a road map for companies to improve their ecological status. It involves time-based targets that must be met to create a genuinely carbon-neutral economy in our country. However, rather than one single way, many smaller methods are helping spring manufacturers achieve their sustainability goals.

green skills in manufacturing

What Are Green Skills?

Green skills are an assistive framework that promotes a more sustainable approach in many areas, including manufacturing. In addition, these skills positively affect individual attitudes within the workplace regarding environmental care. Examples of these are already evident in many workplaces with recycling, but green skills develop it further with adaptable competencies that create a broad green mindset.

Competencies are the culmination of shared skills, knowledge and values that help workers act on a green mindset without distraction from their daily work. Using these green skills, minor ecological improvements can be made daily, building over time into significant, permanent change. The details of these skills will be dependent on your company’s focus, but there are three primary competencies:

Cognitive Competencies

Cognitive involves the company’s awareness of their effect on the environment and what green practices will reduce them to promote sustainability. This competency is relatively fluid, as it can change and grow as new innovations are discovered and applied to your working methods.

Interpersonal and Intrapersonal Competencies

Whereas cognitive is thought of as planning, development, and study, these two are about implementing the ideas to assess their effectiveness. Interpersonal involves creating strategies for your team to follow and establishing guidelines for long-term goals that will track progress. Intrapersonal addresses new skills that may be required but are also intricately connected to technological competencies.

Technological Competencies

Many new eco-friendly processes involve new machinery, technology or strategies that will help reduce harmful waste or carbon emissions. One already wildly successful example is the general elimination of paper correspondence in business, such as letters or printed emails. The increasing implementation of digital processes such as emails has drastically reduced paper waste. The same concept can be applied to other areas of manufacturing. Being more attentive to the sourced raw materials and choosing recycled sources reduces the industry’s effect on the environment immensely.

Sustainable Circular Models

Sourcing the required materials sustainably required significant changes across manufacturing processes. Circular models aim to eliminate the traditional linear method of product creation that leads to waste and link it to have the waste support new creation. Recycling supports a circular model, but the concept needs to be developed furth within industries. Improving the circular economy model to a remanufacturing plan means greater security and reduced costs relating to sourcing materials as the waste can be reused.

Manufacturing is a high-energy industry that uses many resources and electricity to operate productively. As a result, most facilities are contributing to carbon offset schemes for their power generation needs and supporting the increased development of renewable energy sources such as wind, solar and wave. The increased availability of these renewable sources has led many facility owners to invest in local generation with smaller wind turbines and roofs covered in solar panels. These sources will supplement some of the substantial energy needs of manufacturing parts and components, thereby simultaneously reducing energy costs and environmental impact.

renewable energy

A Sustainable Future for Manufacturing

European Springs is committed to supporting a more ecologically sound industry for future generations. Decreasing the industry’s impact on the environment will secure that future and maintain the integrity of habitats worldwide. Sustainable material use and manufacture also eliminate toxic by-products from waste entering nature’s systems and harming both plants, animals, and humans.

European Springs is a leading manufacturer of custom springs in the UK, and we are constantly working to improve our high-quality spring manufacturing processes, so they continue to have a minimal environmental impact. Contact us to discuss our working methods or any bespoke spring designs you need for your next application.

Close-up image of a compression spring

Here at European Springs, we have over seven decades of experience designing, manufacturing, and implementing our springs in various sectors. As a result, we produce an impressive stock catalogue of springs and are familiar with every type, including the unlimited scope of custom and bespoke springs. This enables us to work closely with all industries, providing our expertise and high-quality products to the masses.

However, this world may seem complicated and somewhat daunting for those not in the spring manufacturing industry. So to shed some light on the importance of the sector, we’re exploring everything you need to know about springs in physics. We’re taking it back to basics by exploring the definition of a spring, the history of its design, the importance of spring durability, and so much more. Read on to learn about the fascinating past of springs and how we at European Springs use this knowledge to assist us in manufacturing high-quality, durable products for a wide range of industries.

What Are Springs?

Before we delve into the physics behind spring design, let’s take a look into what a spring actually is. There are many different wordings of the definition of a spring. Essentially, a spring is a flexible object that can store and exert force and mechanical energy simultaneously when subjected to force. While doing so, it deforms in shape before returning to its original form when the force has been removed.

Springs come in an extensive range of forms, including:

Compression spring machines

Each of these spring types provides the user with a list of benefits and capabilities suited to a different use. As a result, the use of springs is almost endless. They can be found in practically every industry, from farming and agricultural machinery to the medical sector and everything in between.

How Were Springs Invented?

Springs have been in use throughout human history, with some of the first recorded examples in use within the bow and arrow. From there, developments occurred globally, with the spring going from strength to strength and incorporating itself into a range of objects, such as tweezers.

It wasn’t until the late 15th century that the first coiled spring was documented. This documentation of use included springs in door locks and spring-powered clocks. The latter led to the implementation of springs within watch design, a manufacturing practice still in use today.

However, it was Robert Hooke who propelled the use of springs in 1676 with Hooke’s Law.

All About Hooke’s Law

In 1676, English scientist, mathematician and architect Robert Hooke made a discovery that would forever change springs in physics. In simple terms, his idea was that the more a spring is deformed, the more force is needed to further deform it. He noticed this when looking into the stress vs strain curve and how for many materials, they have a linear region.

When stretching a metal spring, the force required to deform it is directly proportional to the spring’s extension. In algebraic terms, this is written:

F = -kX

F is force, k is spring constant, and x is the deformation or extension length.

Of course, like with every rule, there are exceptions. For example, if a spring is stretched too far, it will not conform to Hooke’s Law, and when this happens, the measurements are taken, and this length is considered the elastic limit.

Hooke's law diagram

The Spring Constant

To further understand the importance of Hooke’s Law, let’s dive into the k within the formula, otherwise known as the spring constant.

This part of the equation refers to the exact force needed to deform a spring. For example, if you want a stronger spring, the spring constant must be high; the lower it is, the weaker the spring.

Various factors come into determining the spring factors, such as:

  • The diameter of the wire and the coil
  • The material used to manufacture the spring
  • The length of the spring when relaxed
  • The number of coils

Once you have determined this, you can work out what needs to be done to achieve your ideal spring constant for the usage of your spring.

Where Does Spring Physics Come Into Spring Design and Manufacture

As leading spring manufacturers, we understand that physics plays a significant part in the design and manufacturing of springs. Understanding Hooke’s Law, the spring constant, and the other physical elements of a spring allow you to customise a spring to your exact specifications, which is precisely what we do here at European Springs.

It’s essential for our designers and manufacturers to know how a spring will behave in different circumstances. For example, durability is crucial for many of our clients who need their springs to handle a significant amount of force. We know that in order to strengthen a spring, thus making it more durable, we need to increase the spring constant.

pile of springs with black background

A lot of the time, these things can’t be estimated and instead require precise numbers in order to get the desired result. Our experienced and knowledgeable engineers have been specially trained to ensure that the best results are achieved for every single spring designed and manufactured here at European Springs.

We are proud to produce an extensive range of specialised springs with this knowledge and can provide bespoke springs to your exact specifications considering the physics detailed above.

HOW CAN WE HELP YOU?

    Fields marked with an *are required

    If you would like to send drawings with your enquiry, please email us directly with your enquiry and drawings attached to info.bec@europeansprings.com

    This form collects your name, email, company name, phone number and your enquiry so that one of our team can communicate with you and provide assistance. Please check our Privacy Policy to see what we'll do with your information.